

构建机场视频智能分析体系 智能溯源识别 "B类" 群体

中国民用航空局第二研究所

工程技术研究中心/大数据技术研究所

潘野

CASRI

China Aviation Second Research Institute

地址:成都市二环路南二段17号

Add: No. 17 Second Section South, Second Ring Road, Chengdu, P.R.C.

www.caacsri.com

中国民航局第二研究所:

民航局直属、民航行业内专业从事高新技术应用开发的科研机构,技术解决方案覆盖全国80%以上的省会机场

大数据技术研究所

民航二所下属事业单位,负责**民航大数据技术领域** 的数据模型构建、数据分析、挖掘算法等研究,对 接民航局监控中心等局方单位开展业务数据分析、 运行效率评估等**行业支持工作**;

民航二所与四川省科技厅联合成立,负责开展民航运行与控制领域的**重难点工程技术突破**,指导相关技术在民航信息化建设领域的应用落地;

- 国家科技进步奖3项
- ■省部级科技奖16项
- ■国家级项目28项
- ■科研立项83项
- ■相关软件著作权13项
- ■相关发明专利15项

四川省民航机场运行与控制工程技术研究中心

四川省科学技术厅

成都民航机场航班运行与控制 工程技术研究中心 或现由科学技术局

民航二所—四川大学 产学研联合实验室

中国民用航空局第二研究所

构建机场视频智能分析体系 智能溯源识别"B类"群体 1、机场视频智能分析业务场景

2、智能溯源识别 "B类" 群体

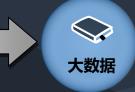
3、机场视频智能分析扩展应用

视频智能分析是民航机场核心信息化技术

视频分析

精细化管理

旅客服务 生产运行 任务派发 进程汇报 及时通讯



态势感知能力

旅客流量及分布密度识别 旅客排队长度识别 旅客异常行为识别 楼内突发异常情况识别 人像寻人

高端及特殊旅客定位 楼内服务设施设备定位及监控 楼内服务人员定位及监控

精准预测及决策支持

数据整合 数据驱动 精准预测 智能告警 决策支持

视频智能分析在航站楼内的核心应用

人流、排队情况检测

可适应机场拥挤、遮挡严重、近乎静止等场景;遮挡严重:85%,遮挡不

严重: 95%

异常场景识别

可检测拥挤、滞留、闯入禁区、聚集等异常场景。适应机场各个区域。标准环境下检测精度:90%以上

行为识别

可检测旅客奔跑、越线、逆行等行为; 遮挡不严重(对摄像头清晰度、角度 无要求):检测精度:90%以上

目标识别

可对机场关注的目标进行检测。适应 机场各个区域。标准环境下检测精度 期望达80%以上

关键能力

- 1. 行人重识别技术
- 2. 人脸识别与特征识别
- 3. 跨摄像头追踪

环境依赖

- 1. 值机、预安检、安检、登机口通道均有枪机照射通道
- 2. 关键区域的排队区域为180度广角的摄像头
- 3. 电梯、通道等均有相应的摄像头进行覆盖
- 4. 可以拿到旅客预安检、值机、安检、登机等相关信息

技术难点1: 人脸直接识别困难

180度的广角下人脸提取:

登机口指廊枪机人脸提取:

技术难点2: 人数较多时实时性难保证

180度的广角下人脸提取:

技术难点3: 人体属性特征提取识别困难

性别: 男性

年龄阶段:青年

上身服饰: 短袖

下身服饰: 不确定

上身服饰颜色: 灰

下身服饰颜色: 不确定

是否戴帽子: 无帽

是否戴口罩:不确定

是否吸烟: 不确定

是否使用手机: 不确定

是否背包: 无背包

性别: 男性

年龄阶段:青年

上身服饰: 短袖

下身服饰:长裤

上身服饰颜色:白

下身服饰颜色:黑

是否戴帽子: 无帽

是否戴口罩: 戴口罩

是否吸烟: 未吸烟

是否使用手机: 看手机

是否背包: 无背包

是古肖包: 九肖包

是古使用手机: 看手机

SEPHONE: NO

同一场景下,灯光的差异会引起衣服颜色识别的不确定性。

仅仅使用人体属性或者人体的衣服颜色,不足以进行目标的位置及身份定位。

应用部署1:新型冠状病毒B类人员溯源

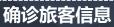
人类A类A

已感染人群

C类人员

疑似被A和 B感染人群 B类人员

被A感染的未 知人群 ?


D类人员

未感染人群

现在最大的隐患是B,根本找不到,没有人知道谁是B,自己也不知道自己是B

溯源识别流程

(航班、日期、姓名、身份证)

大数据平台 (确诊旅客关键节点数据)

安检区域

倒序追踪确诊人员各个节点轨迹

确定B类人员

输出B的时间 节点

大数据平台

2.倒序追踪还原A类旅客位置信息

3.确定A1节点中的B类旅客

4.以检测出B1为基准,对B1进行跟踪,跟踪至B14位置,输出信息

疫情期间在首都机场集团应用

中国民用航空局

首都机场集团公司

中国民航局第二研究所

描述确诊人员在关键区域的运动位置

基于传染病传播机理的B类人员的寻找确认

基于多目标跟踪技术确认潜在感染者的轨迹描述及身份

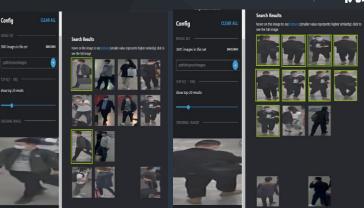
用户证明

中国民用航空总局第二研究所。

贵单位为我部(首都机场集团公司质量安全部)研制的"机场航 站楼 B 类人员溯源识别系统"于 2020 年 3 月 17 日在集团云平台成功 部署上线。

贵单位团队克服疫情期间远程办公的不利条件,经过周密的部 署,快速构建了系统架构和功能模块。系统已实现对确诊人员在关键 区域的轨迹追踪、密切接触者轨迹追踪和身份识别。系统可与集团成 员机场的视频分析系统进一步对接,完成全流程精准分析。此功能已 经部署在集团智慧云平台,可以提供给京津冀四场使用。

系统上线运行后多次积极响应我部需求,完成系统优化迭代。先 后实现了大兴国际机场未佩戴口罩人员实时监测,具备了系统功能。 面对境外疫情输入形势的日趋严峻, 系统针对首都机场国际讲进集中 处置区以及中转流程, 优化系统核心功能, 完成多例境外输入确诊案 例的密切接触者溯源识别,在我部及集团下属单位的境外疫情输入防 控工作中发挥了积极的作用。


工程技术研究中心&大数据技术研究

科研成果在国内领先

机场视频智能分析的人群查找

1、特定行人轨迹还原

关注机场员工重点关注行人, 包含迟登机旅客、丢失旅客, 在GIS前端展示

2、VIP旅客的识别

通过航空公司给到的VIP旅客的信息识别VIP旅客的相关信息,进行精细化服务。

3、"黄牛"等特殊群体识别

通过建立黄牛库, 抓取人脸进 行匹配对比实现其识别。

民航科技创新示范区助力行业信息化建设

2017年9月7日,民航局与四川省政府 签订《关于共建民航科技创新示范区 合作协议》, 议定在成都天府空港新 城打造我国具有世界水平的民航先进 技术创新平台

2020年9月10日,由民航局和四 川省联合共建、民航二所担任项目 法人的民航科技创新示范区项目开 工仪式在成都东部新区天府国际空 港新城隆重举行

构建机场视频智能分析体系 智能溯源识别"B类"群体

中国民用航空局第二研究所

工程技术研究中心&大数据技术研究所

THANK YOU! 谢谢

PRESENTED BY CASRI